Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low energy electrons can initiate and control chemical reactions through resonant attachment forming an electron-molecule compound state. Recently, it has been theoretically shown that free electrons can also act as catalysts in chemical reactions. We investigate this novel concept for the case of conversion of formic acid into CO. Resonant production of CO from cold formic acid films by low energy electron impact is observed using Fourier transform infrared spectroscopy. The resonant peak observed at 6 eV is identified as the catalytic electron channel. The experimental results are augmented with the quantum chemical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5032172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!