Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pruned-enriched Rosenbluth method (PERM) is a popular and powerful Monte-Carlo technique for sampling flexible chain polymers of substantial length. In its original form, however, the method cannot be applied in Markov-chain Monte-Carlo schemes, which has rendered PERM unsuited for systems that consist of many chains. The current work builds on the configurational-bias Monte-Carlo (CBMC) method. The growth of a large set of trial configurations in each move is governed by simultaneous pruning and enrichment events, which tend to replace configurations with a low statistical weight by clones of stronger configurations. In simulations of dense brushes of flexible chains, a gain in efficiency of at least three orders of magnitude is observed with respect to CBMC and one order of magnitude with respect to recoil-growth approaches. Moreover, meaningful statistics can be collected from all trial configurations through the so-called "waste-recycling" Monte Carlo scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5029566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!