Commercial, titanium dioxide (TiO) ingredients used as color additives (E171) in foods and beverages contain an appreciable fraction of particles in the nanoscale range. At present, little information is available regarding the potential impact of food-grade TiO nanoparticles on the gastrointestinal fate of co-ingested bioactives, such as nutraceuticals. In this study, the impact of TiO on the bioaccessibility of β-carotene solubilized in model food emulsions was investigated using a simulated gastrointestinal tract model. Raman spectroscopy showed that there was no charge transfer between β-carotene and TiO but that some β-carotene absorbed to the surface of TiO particles. The initial particle size of the food emulsion did not significantly affect β-carotene bioaccessibility, probably because the same amount of free fatty acids (FFAs) was released by the end of digestion. The addition of TiO at levels typically found in foods also had no significant impact on β-carotene bioaccessibility and FFA release, which suggested that this type of inorganic particle does not interfere with the gastrointestinal fate of these lipophilic bioactive agents. This information is important for ensuring the safety of inorganic nanoparticle utilization within the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b02025 | DOI Listing |
PLoS One
January 2025
Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, United States of America.
Previous studies have indicated the great performance of electrooxidation (EO) to mineralize per- and polyfluoroalkyl substances (PFASs) in water, but different anions presented in wastewater may affect the implementation of EO treatment in field applications. This study invetigated EO treatment of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), two representative perfluoroalkyl acids (PFAAs), using porous Magnéli phase titanium suboxide anodes in electrolyte solutions with different anions present, including NO3-, SO42-, CO32- and PO43-. The experiment results indicate that CO32- enhanced PFAS degradation, while NO3- suppressed the degradation reactions with its concentration higher than 10 mM.
View Article and Find Full Text PDFNanoscale
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís 65075-120, MA, Brasil.
Introduction/objectives: Failures of osseointegrated implants pose a significant challenge in the medical field, often attributed to prolonged osseointegration periods and bacterial infections. Functionalization of Titanium Dioxide Nanotubes (TNTs) has emerged as a promising strategy to improve osseointegration and mitigate infections. This study aims to conduct a bibliometric analysis and systematic review to identify trends, gaps, and advancements in research on the functionalization of TNTs for osseointegration improvement.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.
View Article and Find Full Text PDFNPJ Antimicrob Resist
April 2024
Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Antimicrobial resistance can arise in the natural environment via prolonged exposure to the effluent released by manufacturing facilities. In addition to antibiotics, pharmaceutical plants also produce non-antibiotic pharmaceuticals, both the active ingredients and other components of the formulations. The effect of these on the surrounding microbial communities is less clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!