The statistical properties of the carrier density profile of graphene in the ground state in the presence of particle-particle interaction and random charged impurity in zero gate voltage has been recently obtained by Najafi et al. [Phys. Rev. E 95, 032112 (2017)2470-004510.1103/PhysRevE.95.032112]. The nonzero chemical potential (μ) in gated graphene has nontrivial effects on electron-hole puddles, since it generates mass in the Dirac action and destroys the scaling behaviors of the effective Thomas-Fermi-Dirac theory. We provide detailed analysis on the resulting spatially inhomogeneous system in the framework of the Thomas-Fermi-Dirac theory for the Gaussian (white noise) disorder potential. We show that the chemical potential in this system as a random surface destroys the self-similarity, and also the charge field is non-Gaussian. We find that the two-body correlation functions are factorized to two terms: a pure function of the chemical potential and a pure function of the distance. The spatial dependence of these correlation functions is double logarithmic, e.g., the two-point density correlation behaves like D_{2}(r,μ)∝μ^{2}exp[-(-a_{D}lnlnr^{β_{D}})^{α_{D}}] (α_{D}=1.82, β_{D}=0.263, and a_{D}=0.955). The Fourier power spectrum function also behaves like ln[S(q)]=-β_{S}^{-a_{S}}(lnq)^{a_{S}}+2lnμ (a_{S}=3.0±0.1 and β_{S}=2.08±0.03) in contrast to the ordinary Gaussian rough surfaces for which a_{S}=1 and β_{S}=1/2(1+α)^{-1} (α being the roughness exponent). The geometrical properties are, however, similar to the ungated (μ=0) case, with the exponents that are reported in the text.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.98.012111DOI Listing

Publication Analysis

Top Keywords

chemical potential
12
thomas-fermi-dirac theory
8
correlation functions
8
pure function
8
scaling properties
4
properties monolayer
4
monolayer graphene
4
graphene dirac
4
dirac point
4
point statistical
4

Similar Publications

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.

View Article and Find Full Text PDF

Lower bounds on trees and unicyclic graphs with respect to the misbalance rodeg index.

Heliyon

January 2025

Department of Computer and Information Sciences, Northumbria University, Newcastle, NE1 8ST, UK.

The Misbalance Rodeg () index stands out among the 148 discrete Adriatic indices demonstrating considerable predictive capabilities in evaluations carried out by the International Academy of Mathematical Chemistry. This index excels particularly in forecasting both the enthalpy and the standard enthalpy of vaporization for octane isomers. Despite its significant chemical applicability, the index has not been extensively explored in the literature.

View Article and Find Full Text PDF

The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.

View Article and Find Full Text PDF

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!