We investigate the dynamics of nonlocally coupled time-discrete maps with emphasis on the occurrence and robustness of chimera states. These peculiar, hybrid states are characterized by a coexistence of coherent and incoherent regions. We consider logistic maps coupled on a one-dimensional ring with finite coupling radius. Domains of chimera existence form different tongues in the parameter space of coupling range and coupling strength. For a sufficiently large coupling strength, each tongue refers to a wave number describing the structure of the spatial profile. We also analyze the period-adding scheme within these tongues and multiplicity of period solutions. Furthermore, we study the robustness of chimeras with respect to parameter inhomogeneities and find that these states persist for different widths of the parameter distribution. Finally, we explore the spatial structure of the chimera using a spatial correlation function.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.98.012217DOI Listing

Publication Analysis

Top Keywords

robustness chimera
8
chimera states
8
nonlocally coupled
8
logistic maps
8
coupling strength
8
states
4
states nonlocally
4
coupled networks
4
networks nonidentical
4
nonidentical logistic
4

Similar Publications

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.

View Article and Find Full Text PDF

Foxa1 disruption enhances human cell integration in human-mouse interspecies chimeras.

Cell Tissue Res

December 2024

Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is the principal driver of prostate cancer, and drugs that target this pathway (e.g., abiraterone and enzalutamide) are standard treatments for metastatic hormone-sensitive prostate cancer and metastatic castration-resistant prostate cancer (mCRPC).

View Article and Find Full Text PDF

The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 T cell response pre-emptively, in the absence of an infection. However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!