Using the machine learning approach known as reservoir computing, it is possible to train one dynamical system to emulate another. We show that such trained reservoir computers reproduce the properties of the attractor of the chaotic system sufficiently well to exhibit chaos synchronization. That is, the trained reservoir computer, weakly driven by the chaotic system, will synchronize with the chaotic system. Conversely, the chaotic system, weakly driven by a trained reservoir computer, will synchronize with the reservoir computer. We illustrate this behavior on the Mackey-Glass and Lorenz systems. We then show that trained reservoir computers can be used to crack chaos based cryptography and illustrate this on a chaos cryptosystem based on the Mackey-Glass system. We conclude by discussing why reservoir computers are so good at emulating chaotic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.98.012215DOI Listing

Publication Analysis

Top Keywords

reservoir computer
16
trained reservoir
16
chaotic system
16
reservoir computers
12
reservoir
8
chaos synchronization
8
weakly driven
8
will synchronize
8
chaotic
6
system
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!