The surface characteristics of fractured specimens are important in hydraulic fracturing laboratory experiments. In this paper, we present a three-dimensional (3D) scanning device assembled to study these surface characteristics. Cube-shaped rock specimens were produced in the laboratory and subjected to triaxial loading until the specimen split in two in a hydraulic fracturing experiment. Each fractured specimen was placed on a rotating platform and scanned to produce 3D superficial coordinates of the surface of the fractured specimen. The scanned data were processed to produce high-precision digital images of the fractured model, a surface contour map and accurate values of the superficial area and specimen volume. The images produced by processing the 3D scanner data provided detailed information on the morphology of the fractured surface and mechanism of fracture propagation. High-precision 3D mapping of the fractured surfaces is essential for quantitative analysis of fractured specimens. The 3D scanning technology presented here is an important tool for the study of fracture characteristics in hydraulic fracturing experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030275 | PMC |
http://dx.doi.org/10.1098/rsos.171845 | DOI Listing |
Sci Rep
January 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, China.
The laminae of varying lithologies are characteristic of shale oil reservoirs, with their pronounced heterogeneity and fluid-solid coupling significantly impacting oil productivity. To this end, this study initially quantified the permeability and mechanical heterogeneity in lamina-developed shale through permeability tests and quasi triaxial mechanical experiments on shale cores from different orientations in the Jiyang Depression. These tests revealed marked brittleness in horizontally oriented cores and elasticity in vertically oriented cores.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada.
Induced earthquakes are manifestations of highly heterogeneous distributions of effective stress changes imparted by anthropogenic activities such as hydraulic fracturing and wastewater injection. It is critical to disentangle the mechanisms behind these earthquakes to better assess seismic risk. Here, a clustering methodology is applied to a catalog of 21,536 induced earthquakes detected during a 36-d hydraulic stimulation program in Western Canada.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon.
The composition of hydraulic fracturing (HF) fluid poses risks to human health and the environment by impacting drinking water sources. Fracturing fluid recovery rate is highly variable, and the fact that a high percentage of the injected HF fluid is not produced back to the surface in some areas raises questions about its fate and possible migration into aquifers. In this paper, the composition of the HF fluid and related toxicity are described, along with insights about the environmental impact linked with HF fluid, synthesized spill data, main factors affecting the flow-back ratio, and induced seismicity related to HF activities.
View Article and Find Full Text PDFACS Omega
December 2024
School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.
View Article and Find Full Text PDFSci Rep
December 2024
College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!