Historical records of orchid bees (Apidae: Euglossini) in Belém Endemism Center: species list of 92 years sampling.

Braz J Biol

Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia - INPA, Av. André Araújo, nº 2936, Petrópolis, CEP 69067-375, Manaus, AM, Brasil.

Published: May 2019

The distribution of most species occurs in delimited regions with unique characteristics called "centers of endemism". In Eastern Amazon is located the Belém Endemism Center (BEC), one of the most intensely deforested in Brazilian Amazon. Here, we show information about orchid bee assemblages based on historical records from entomological collections. For each species, we calculated occurrence frequency and dominance, and we classified them in 3 statuses: common, intermediate or rare species. Curves of observed and estimated richness were built, based on Jackknife estimator. We found 1,257 specimens from 56 species, constituting records from 1917 to 2009, and one species is a new record for BEC. Higher number of specimens and species was concentrated in a few locations and surveys increased from the 70's. The results suggest a high richness of orchid bees in the BEC, although this scenario is far from what is expected for the entire area. The high occurrence of rare species may be related to their low representativeness in the collections, and the proximity between the areas had favored samplings. Even so, the species list and the conservation status presented here may be useful information in studies comparing past and current orchid bee fauna, and, allied to data on bees' responses to land use changes occurred in BEC over the years, can fit as a basis for defining priority areas for conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1590/1519-6984.180139DOI Listing

Publication Analysis

Top Keywords

species
9
historical records
8
orchid bees
8
belém endemism
8
endemism center
8
species list
8
orchid bee
8
rare species
8
specimens species
8
orchid
4

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

The recognition of conspecifics, animals of the same species, and keeping track of changes in the social environment is essential to all animals. While molecules, circuits, and brain regions that control social behaviors across species are studied in-depth, the neural mechanisms that enable the recognition of social cues are largely obscure. Recent evidence suggests that social cues across sensory modalities converge in a thalamic area conserved across vertebrates.

View Article and Find Full Text PDF

Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!