To overcome the increased disease rate, utilization of the versatile broad spectrum antibiotic drugs in controlled drug-delivery systems has been a challenging and complex consignment. However, with the development of microemulsion (μE)-based formulations, drugs can be effectively encapsulated and transferred to the target source. Herein, two biocompatible oil-in-water (o/w) μE formulations comprising clove oil/Tween 20/ethylene glycol/water (formulation A) and clove oil/Tween 20/1-butanol/water (formulation B) were developed for encapsulating the gatifloxacin (GTF), a fourth-generation antibiotic. The pseudoternary phase diagrams were mapped at a constant surfactant/co-surfactant (1:1) ratio to bound the existence of a monophasic isotropic region for as-formulated μEs. Multiple complementary characterization techniques, namely, conductivity (σ), viscosity (η), and optical microscopy analyses, were used to study the gradual changes that occurred in the microstructure of the as-formulated μEs, indicating the presence of a percolation transformation to a bicontinuous permeate flow. GTF showed good solubility, 3.2 wt % at pH 6.2 and 4.0 wt % at pH 6.8, in optimum μE of formulation A and formulation B, respectively. Each loaded μE formulation showed long-term stability over 8 months of storage. Moreover, no observable aggregation of GTF was found, as revealed by scanning transmission electron microscopy and peak-to-peak correlation of IR analysis, indicating the stability of GTF inside the formulation. The average particle size of each μE, measured by dynamic light scattering, increased upon loading GTF, intending the accretion of drug in the interfacial layers of microdomains. Likewise, fluorescence probing sense an interfacial hydrophobic environment to GTF molecules in any of the examined formulations, which may be of significant interest for understanding the kinetics of drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01775 | DOI Listing |
Cureus
December 2024
Department of Ophthalmology, UT Southwestern Medical Center, Dallas, USA.
An 83-year-old male with a history of radial keratotomy and laser-assisted in situ keratomileusis (LASIK) presented with symptoms of a non-resolving corneal ulcer in the right eye that had been present for five months. The patient was treated with antibacterial, antiviral, and antifungal medications over that period, with multiple recurrences that prompted referral to our tertiary center for management. Following a 48-hour cessation of all medications, a corneal biopsy was performed which grew .
View Article and Find Full Text PDFInfect Drug Resist
December 2024
Département de Biochimie Microbiologie, Ecole Doctorale Sciences Et Technologies (EDST)/Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.
Purpose: The emergence of antibiotic resistance in pathogenic is a public health problem in tropical countries such as Burkina Faso. Antibiotic resistance could be identified using a variety of approaches. This study aimed to estimate the prevalence of pathogenic enterobacteria strains from three sources, as well as their antibiotic resistance profile to biotope and climatic season.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties.
View Article and Find Full Text PDFNeuropsychopharmacol Rep
March 2025
National Cancer Center Hospital, Tokyo, Japan.
Comput Biol Med
December 2024
Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. Electronic address:
A number of anaplastic lymphoma kinase (ALK) inhibitors have been clinically approved, with lorlatinib, particularly as a third-generation drug, demonstrating efficacy against various drug-resistant ALK single mutations. However, continued clinical use of lorlatinib has led to the emergence of ALK double mutations conferring resistance to lorlatinib, notably ALK. TPX-0131 is a potential fourth-generation ALK inhibitor currently under development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!