An organic semiconducting polymer nanobiocatalyst (SPNB) composed of a semiconducting polymer core conjugated with microsomal cytochrome P450 (CYP) has been developed for photoactivation of intracellular redox. The core serves as the light-harvesting unit to initiate photoinduced electron transfer (PET) and facilitate the regeneration of dihydronicotinamide adenine dinucleotide phosphate (NADPH), while CYP is the catalytic center for intracellular redox. Under light irradiation, the semiconducting core can efficiently catalyze the generation of NADPH with a turnover frequency (TOF) 75 times higher than the reported nanosystems, ensuring the supply of the cofactor for intracellular redox. SPNB-mediated intracellular redox thus can be efficiently activated by light in living cells to convert the model substrate and also to trigger the bioactivation of anticancer drugs. This study provides an organic nanobiocatalytic system that allows light to remotely control intracellular redox in living systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201806973 | DOI Listing |
Cell Death Dis
January 2025
CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:
Escherichia coli O157:H7 has caused many foodborne disease outbreaks and resulted in unimaginable economic losses. With the evolution of food consumption, people prefer natural preservatives. In this study, the natural agent harmane exhibited potential activity against E.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Laboratory Medicine, The Fourth People's Hospital of Nanhai District of Foshan City, Foshan, 528000, Guangdong, China.
Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!