Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interactions between heavy metals in soil could affect soil heavy metal availability and plant uptake. Thus, in this study, Cd and Pb accumulation as well as plant growth of the mining ecotype (ME) and non-mining ecotype (NME) of Athyrium wardii (Hook.) in response to the exposure of Cd and Pb was investigated by a pot experiment. Although the exposure of Cd in combination with Pb further inhibited the growth of the two ecotypes in comparison with the exposure of single Cd or Pb, the ME presented lower biomass decline for the whole plant (22.0%-70.0%) than the NME among most treatments. The presence of Pb promoted Cd accumulation both in above-ground and under-ground parts of the ME. Cd concentrations in under-ground parts of the ME decreased when exposed to higher concentrations of Pb (> 600 mg kg). Meanwhile, the presence of Cd inhibited Pb accumulation in above-ground parts of the ME and promoted Pb accumulation in under-ground parts of the ME. Pb concentrations in under-ground parts of the ME decreased when soil Cd concentrations were more than 25 mg kg. The partial correlation analysis further demonstrated that the interactions between Cd and Pb stimulated Cd accumulation both in above-ground and under-ground parts of the ME and Pb accumulation in under-ground parts of the ME, while inhibited Pb accumulation in above-ground parts of the ME, showing great benefit for Pb phytostabilization by the ME. Among treatments, the bioaccumulation coefficients for Cd and Pb of the ME, varying from 2.71-31.05 and 20.09-78.06, were much higher than those of the NME. The translocation factors for Cd and Pb of the ME, varying from 0.26-0.52 and 0.01-0.10, were lower than those of the NME. These results indicate that the ME presented greater potential for the phytostabilization of soil contamination with Cd and Pb, especially for Pb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2916-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!