A thermally comfortable design of outdoor spaces favors social interaction and outdoor activities and thus contributes to the overall well-being of urban dwellers. To assess such a design, obstacle-resolving models (ORM) combined with thermal indices may be used. This paper reviews existing thermal indices to identify those suitable for thermal comfort assessment with ORMs. For the identification, 11 criteria and six index features are derived from literature analysis focusing on the characteristics of human environmental heat exchange, of outdoor urban environments, and of ORMs. An air temperature weighted world population distribution is calculated to derive the minimal air temperature range; a thermal index should cover to be applicable to 95% of the world population. The criteria are applied to 165 thermal indices by reviewing their original publications. Results show that only four thermal indices are suitable to be applied globally in their current form to various outdoor urban environments and also fulfill the requirements of ORMs. The evaluation of the index features shows that they differ with respect to the comprehensiveness of the thermophysiological model, the assessed human response, the treatment of clothing and activity, and the computational costs. Furthermore, they differ in their total application frequency in past ORM studies and in their application frequency for different climatic zones, as a systematic literature analysis of thermal comfort studies employing ORMs showed. By depicting the differences of the thermal indices, this paper provides guidance to select an appropriate thermal index for thermal comfort studies with ORMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153498PMC
http://dx.doi.org/10.1007/s00484-018-1591-6DOI Listing

Publication Analysis

Top Keywords

thermal indices
24
thermal comfort
12
thermal
10
indices paper
8
literature analysis
8
outdoor urban
8
urban environments
8
air temperature
8
application frequency
8
comfort studies
8

Similar Publications

The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area.

View Article and Find Full Text PDF

Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework.

View Article and Find Full Text PDF

In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.

View Article and Find Full Text PDF

Foamy Melamine Resin-Silica Aerogel Composite-Derived Thermal Insulation Coating.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.

A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.

View Article and Find Full Text PDF

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!