To explore how a succession of bacteria grown on steel coupons in a marine environment can influence their corrosion process, we designed a microcosm in laboratory to evaluate corrosion kinetics and microbial diversity over 30 days. The results described a clear influence of corrosion by a succession of different bacterial groups. During the initial period, 2-7 days, a sharp increase in the rate of corrosion was detected accompanied by the presence of Alteromonadaceae, Vibrionaceae, Oceanospirillaceae, Rhodobacteraceae, Rhodospirillaceae and Flavobacteriaceae bacteria families. After 15 days, representatives of families Piscirickettsiaceae and Pseudomonadaceae were also described, accompanied by a continuous corrosion process over the coupons. After 30 days, there was a sudden change in the profile of the bacteria present on the steel coupons, with a prevalence of Halomonadaceae family species, and establishment and continuity of the corrosion process by the biofilm grown on the coupons. The results describe differences in microbial diversity over the time, highlighting certain bacterial lithotrophic species that persisted for most of the experiment, through a complex association between bacteria and metal surfaces, which can be a new starting point for development and maintenance of a favorable microenvironment to accelerate corrosion processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-018-1559-2 | DOI Listing |
Antiviral Res
January 2025
INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France. Electronic address:
The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biology, University of the Balearic Islands, Palma 07122, Spain. Electronic address:
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.
View Article and Find Full Text PDFWater Res
December 2024
Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:
Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!