Slipstreaming in Gravity Powered Sports: Application to Racing Strategy in Ski Cross.

Front Physiol

Smart Equipment Engineering and Wearable Technology Research Program, Centre for Design Innovation, Swinburne University of Technology, Melbourne, VIC, Australia.

Published: July 2018

The principles of slipstreaming or drafting are very well known in muscle-powered sports, but unknown in gravity-powered sports. Typical examples of gravity-powered sports, where several athletes are racing against each other, are ski-cross and snowboard-cross. The aim of this research is to investigate the effectiveness and practical applicability of slipstreaming in ski-cross. A glide model consisting of leading and trailing skiers was developed and used with existing aerodynamic drag and lift data sets from wind tunnel tests. Different scenarios were tested as to their effect on slipstreaming, such as variation of speed, skiers' mass, slope angle, air density, and racing posture (high/low tucked position). The higher the trailing skier's inertial force and acceleration is compared to the leading one, the quicker the trailing skier can catch up. Making more ground up on the racing track is related to higher speed, less body mass (of both skiers), flatter slope angle, denser air, and higher racing posture (high tucked position of both skiers). The glide model presented in this research can be used in the future for testing of slope track design, provided that precise dimensions of terrain features are available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079503PMC
http://dx.doi.org/10.3389/fphys.2018.01032DOI Listing

Publication Analysis

Top Keywords

gravity-powered sports
8
glide model
8
slope angle
8
racing posture
8
tucked position
8
racing
5
slipstreaming
4
slipstreaming gravity
4
gravity powered
4
sports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!