Many species of phytoplankton produce toxins that may provide protection from grazing. In that case one would expect toxin production to be costly; else all species would evolve toxicity. However, experiments have consistently failed to show any costs. Here, we show that costs of toxin production are environment dependent but can be high. We develop a fitness optimization model to estimate rate, costs, and benefits of toxin production, using PST (paralytic shellfish toxin) producing dinoflagellates as an example. Costs include energy and material (nitrogen) costs estimated from well-established biochemistry of PSTs, and benefits are estimated from relationship between toxin content and grazing mortality. The model reproduces all known features of PST production: inducibility in the presence of grazer cues, low toxicity of nitrogen-starved cells, but high toxicity of P-limited and light-limited cells. The model predicts negligible reduction in cell division rate in nitrogen replete cells, consistent with observations, but >20% reduction when nitrogen is limiting and abundance of grazers high. Such situation is characteristic of coastal and oceanic waters during summer when blooms of toxic algae typically develop. The investment in defense is warranted, since the net growth rate is always higher in defended than in undefended cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298997PMC
http://dx.doi.org/10.1038/s41396-018-0250-6DOI Listing

Publication Analysis

Top Keywords

toxin production
16
producing dinoflagellates
8
production
5
toxin
5
costs
5
cost toxin
4
production phytoplankton
4
phytoplankton case
4
case pst
4
pst producing
4

Similar Publications

Background: Acetylcholine, a neurotransmitter critical for cognitive functions, including attention, memory, and sociability, is essential for maintaining synaptic integrity. Deficits in acetylcholine levels are linked to cognitive impairments. Heterozygous VAChT KD (VAChT KDHET) mice, characterized by reduced vesicular acetylcholine transporter protein production, exhibit cognitive impairments due to diminished acetylcholine release.

View Article and Find Full Text PDF

Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.

View Article and Find Full Text PDF

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:

Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.

View Article and Find Full Text PDF

Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products.

Food Res Int

January 2025

Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.

Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!