Cytogenetic studies suggested that chromosome 15q11-q13 might be a candidate region that increases the risk of autism. Previous association studies in Caucasian populations identified the risk variants of genes in this region. However, the association of these genes with autism in Chinese Han population remains unclear. Herein, 512 autism trios were utilized for a family-based association study of 41 tag single nucleotide polymorphisms (SNPs) in this region to explore the association between protein-coding genes on chromosome 15q11-q13 and autism in Chinese Han population. Furthermore, we sequenced these autism-related genes to detect rare variants in 512 autism trios and 575 healthy controls. Our results showed that the C allele of rs7180500 in GABRG3 was a risk variant for autism (p = 0.00057). The expression quantitative trait loci (eQTL) analysis revealed that the C allele of rs7180500 might be associated with the expression of GABRG3 in the cerebellum (Braineac: p = 0.0048; GTEx: p = 0.0010). Moreover, the sequencing identified two rare variants rs201602655 (p.Val233Met) and rs201427468 (p.Pro365Ser) in GABRG3 and six rare variants in GABRB3 in autistic patients. Among these variants, rs201602655 (p.Val233Met) in GABRG3 were observed in 9 of 512 autistic children and 2 of 575 healthy controls (Pearson χ-test, χ = 5.375, p = 0.020). The functional prediction indicated that rs201602655 (p.Val233Met) might be deleterious. Thus, these findings demonstrated that GABRG3 might contribute to the pathogenesis of autism in Chinese Han population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092396PMC
http://dx.doi.org/10.1038/s41398-018-0197-4DOI Listing

Publication Analysis

Top Keywords

autism chinese
16
chinese han
16
han population
16
chromosome 15q11-q13
12
rare variants
12
rs201602655 pval233met
12
association study
8
genes chromosome
8
autism
8
512 autism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!