Effects of polyamines on protein synthesis and growth of .

J Biol Chem

the Faculty of Pharmacy, Chiba Institute of Science, 15-8, Shiomi-cho, Choshi, Chiba 280-0025, Japan.

Published: November 2018

The polyamines (PA) putrescine, spermidine, and spermine have numerous roles in the growth of both prokaryotic and eukaryotic cells. For example, it is well known that putrescine and spermidine are strongly involved in proliferation and viability of cells. Studies of polyamine functions and distributions in cells have revealed that polyamines mainly exist as an RNA-polyamine complex. Polyamines stimulate the assembly of 30S ribosomal subunits and thereby increase general protein synthesis 1.5- to 2.0-fold. Moreover, these studies have shown that polyamines stimulate synthesis of 20 different proteins at the level of translation, which are strongly involved in cell growth and viability. The genes encoding these 20 different proteins were termed as the "polyamine modulon." We here review the mechanism of activation of 30S ribosomal subunits and stimulation of specific proteins. Other functions of polyamines in are also described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290148PMC
http://dx.doi.org/10.1074/jbc.TM118.003465DOI Listing

Publication Analysis

Top Keywords

protein synthesis
8
putrescine spermidine
8
polyamines stimulate
8
30s ribosomal
8
ribosomal subunits
8
polyamines
5
effects polyamines
4
polyamines protein
4
synthesis growth
4
growth polyamines
4

Similar Publications

Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF

Spermidine enhances the heat tolerance of by promoting mitochondrial respiration driven by fatty acid β-oxidation.

Appl Environ Microbiol

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!