Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel.

J Biol Chem

From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110

Published: September 2018

Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. , , and isolates encoding the high pathogenicity island (HPI) secrete yersiniabactin (Ybt), a metallophore originally shown to chelate iron ions during infection. However, our recent demonstration that Ybt also scavenges copper ions during infection led us to question whether it might be capable of retrieving other metals as well. Here, we find that uropathogenic also use Ybt to bind extracellular nickel ions. Using quantitative MS, we show that the canonical metal-Ybt import pathway internalizes the resulting Ni-Ybt complexes, extracts the nickel, and releases metal-free Ybt back to the extracellular space. We find that and direct the nickel liberated from this pathway to intracellular nickel enzymes. Thus, Ybt may provide access to nickel that is inaccessible to the conserved NikABCDE permease system. Nickel should be considered alongside iron and copper as a plausible substrate for Ybt-mediated metal import by enterobacteria during human infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166729PMC
http://dx.doi.org/10.1074/jbc.RA118.004483DOI Listing

Publication Analysis

Top Keywords

ions infection
8
nickel
7
ybt
5
uropathogenic enterobacteria
4
enterobacteria yersiniabactin
4
yersiniabactin metallophore
4
metallophore system
4
system acquire
4
acquire nickel
4
nickel invasive
4

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection.

Int J Mol Sci

January 2025

General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.

Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.

View Article and Find Full Text PDF

Exploring Metal Ions as Potential Antimicrobial Agents to Combat Future Drug Resistance in .

Microorganisms

January 2025

Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia.

The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.

View Article and Find Full Text PDF

Background: Puccinia striiformis f. sp. tritici (Pst) causes wheat stripe (yellow) rust disease, which is one of the most destructive diseases affecting wheat worldwide.

View Article and Find Full Text PDF

Background: Weather extremes are predicted to influence pathogen exposure but their effects on specific faecal-oral transmission pathways are not well investigated. We evaluated associations between extreme rain and temperature during different antecedent periods (0-14 days) and Escherichia coli along eight faecal-oral pathways in rural Bangladeshi households.

Methods: We used data from the WASH Benefits Bangladesh cluster-randomised controlled trial (NCT01590095).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!