Next-generation sequencing (NGS) has been applied to define clinically relevant somatic mutations and classify subtypes in acute myeloid leukemia (AML). Persistent allelic burden after chemotherapy is associated with higher relapse incidence, but presence of allelic burden in AML patients after receiving allogeneic hematopoietic cell transplantation (HCT) has not been examined longitudinally. As such, we aimed to assess the feasibility of NGS in monitoring AML patients receiving HCT. Using a targeted gene panel, we performed NGS in 104 AML patients receiving HCT using samples collected at diagnosis, pre-HCT, and post-HCT at day 21 (post-HCT). NGS detected 256 mutations in 90 of 104 patients at diagnosis, which showed stepwise clearances after chemotherapy and HCT. In a subset of patients, mutations were still detectable pre-HCT and post-HCT. Most post-HCT mutations originate from mutations initially detected at diagnosis. Post-HCT allelic burdens in relapsed patients were higher than in nonrelapsed patients. Post-HCT mutations in relapsed patients all expanded at relapse. Assessment of variant allele frequency (VAF) revealed that overall VAF post-HCT (VAF-post-HCT) is associated with an increased risk of relapse (56.2% vs 16.0% at 3 years; < .001) and worse overall survival (OS; 36.5% vs 67.0% at 3 years; = .006). Multivariate analyses confirmed that VAF-post-HCT is an adverse prognostic factor for OS (hazard ratio [HR], 3.07; = .003) and relapse incidence (HR, 4.75; < .001), independent of the revised European LeukemiaNet risk groups. Overall, current study demonstrates that NGS-based posttransplant monitoring in AML patients is feasible and can distinguish high-risk patients for relapse.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2018-04-848028DOI Listing

Publication Analysis

Top Keywords

aml patients
16
patients receiving
12
patients
11
posttransplant monitoring
8
acute myeloid
8
myeloid leukemia
8
risk relapse
8
allelic burden
8
relapse incidence
8
monitoring aml
8

Similar Publications

Accurate prediction of survival in patients with acute myelogenous leukemia (AML) is challenging. Therefore, we developed a predictive survival model using endocrine-related gene expression to identify an endocrine signature for accurate stratification of AML prognosis. RNA matrices and clinical data for AML were downloaded from a training dataset (GEO) and two validation datasets (TCGA and TARGET).

View Article and Find Full Text PDF

Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.

View Article and Find Full Text PDF

Background: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematologic malignancy. It is the most common form of acute leukemia among adults. Recent treatment advances have drastically improved outcomes for these diseases, but the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS).

View Article and Find Full Text PDF

Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.

Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!