The clinical spectrum and genetic variability of limb-girdle muscular dystrophy in a cohort of Chinese patients.

Orphanet J Rare Dis

Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China.

Published: August 2018

Background: Limb-girdle muscular dystrophy (LGMD) is a commonly diagnosed hereditary muscular disorder, characterized by the progressive weakness of the limb-girdle muscles. Although the condition has been well-characterized, clinical and genetic heterogeneity can be observed in patients with LGMD. Here, we aimed to describe the clinical manifestations and genetic variability among a cohort of patients with LGMD in South China.

Results: We analyzed the clinical information, muscle magnetic resonance imaging (MRI) findings, and genetic results obtained from 30 patients (24 families) with clinically suspected LGMD. In 24 probands, 38 variants were found in total, of which 18 were shown to be novel. Among the 30 patients, the most common subtypes were dysferlinopathy in eight (26.67%), sarcoglycanopathies in eight [26.67%; LGMD 2C in three (10.00%), LGMD 2D in three (10.00%), and LGMD 2F in two (6.67%)], LGMD 2A in seven (23.33%), followed by LGMD 1B in three (10.00%), LGMD 2I in three (10.00%), and early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy in one (3.33%). Furthermore, we also observed novel clinical presentations for LGMD 1B, 2F, and 2I patients with hypermobility of the joints in the upper limbs, a LGMD 2F patient with delayed language development, and other manifestations. Moreover, distinct distributions of fatty infiltration in patients with LGMD 2A, dysferlinopathy, and the early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy were also observed based on muscle MRI results.

Conclusions: In this study, we expanded the clinical spectrum and genetic variability found in patients with LGMD, which provided additional insights into genotype and phenotype correlations in this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092860PMC
http://dx.doi.org/10.1186/s13023-018-0859-6DOI Listing

Publication Analysis

Top Keywords

patients lgmd
16
lgmd three
16
three 1000%
16
lgmd
14
genetic variability
12
1000% lgmd
12
clinical spectrum
8
spectrum genetic
8
limb-girdle muscular
8
muscular dystrophy
8

Similar Publications

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Introduction: A 20 kDa fragment at the N-terminus of titin is highly excreted in the urine of patients with Duchenne muscular dystrophy (DMD), making urine titin a prominent biomarker for muscle breakdown. This N-terminal fragment is presumed to be a product of degradation by a protein-degrading enzyme, calpain 3; however, whether calpain 3 is required remains unclear. We aimed to determine whether urine titin elevation occurs in the absence of calpain 3.

View Article and Find Full Text PDF
Article Synopsis
  • Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is a rare genetic muscle disorder caused by mutations in the CAPN3 gene, leading to progressive muscle weakness.
  • A case study of a 17-year-old boy with LGMDR1 revealed he developed a desmoplastic small round cell tumor (DSRCT), a rare and aggressive type of cancer, confirmed through molecular tests.
  • Despite thorough genetic testing, no known childhood cancer predisposition genes were found, highlighting the need for more research into the potential cancer risks associated with LGMDR1.
View Article and Find Full Text PDF

Development of differential diagnostic models for distinguishing between limb-girdle muscular dystrophy and idiopathic inflammatory myopathy.

Arthritis Res Ther

December 2024

Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.

Objective: Limb-girdle muscular dystrophy (LGMD) is usually confused with idiopathic inflammatory myopathy (IIM) in clinical practice. Our study aimed to establish convenient and reliable diagnostic models for distinguishing between LGMD and IIM.

Methods: A total of 71 IIM patients, 24 LGMDR2 patients and 22 LGMDR1 patients diagnosed at our neuromuscular center were enrolled.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary myopathies involve several hundred genetic variants, with Limb-girdle muscular dystrophies (LGMDs) being a diverse group of disorders linked to more than 30 genes, characterized primarily by limb weakness.
  • The study analyzed 2,372 patients across 21 countries to assess the prevalence of LGMD and Pompe disease through next-generation sequencing (NGS), finding that 11% had pathogenic genetic variants, with a high diagnostic effectiveness for LGMD (86.2%).
  • The findings emphasize the importance of including specific genes in NGS panels for diagnosing LGMW, contributing to a better understanding of LGMD and aiding in the identification of late-onset Pompe disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!