The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human β2 and β5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407133 | PMC |
http://dx.doi.org/10.1021/jacs.8b06656 | DOI Listing |
Sci Rep
November 2024
Department of Pathology, University of Cambridge, Cambridge, UK.
Ubiquitin C-terminal hydrolase 37 (UCH37 also known as UCHL5) is a conserved deubiquitinating enzyme (DUB) with dual roles in proteasomal degradation and chromatin remodeling in humans. Its Plasmodium falciparum ortholog, PfUCH37, is unusual in that it possesses both DUB and deneddylating activities. While PfUCH37 is enriched in proteasome preparations, its direct interaction and broader functions in Plasmodium remain unclear, particularly given the absence of the chromatin remodeling complex INO80 homologs.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea.
Malaria remains a global health challenge, with increasing resistance to frontline antimalarial treatments such as artemisinin (ART) threatening the efficacy of current therapies. In this study, we investigated the potential of FDA-approved drugs to selectively inhibit the malarial proteasome, a novel target for antimalarial drug development. By leveraging pharmacophore modeling, molecular docking, molecular dynamics (MD) simulations, and binding free-energy calculations, we screened a library of compounds to identify inhibitors selective for the Plasmodium proteasome over the human proteasome.
View Article and Find Full Text PDFACS Omega
November 2024
Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic.
Tick-transmitted are a major global veterinary threat and an emerging risk to humans. Unlike their relatives, these erythrocyte-infecting Apicomplexa have been largely overlooked and lack specific treatment. Selective targeting of the proteasome holds promise for drug development.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2024
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
Background: Malaria is a devasting parasitic disease that causes over half a million deaths every year. The necessity for prompt and thorough antimalarial drug discovery and development is accelerated by the rise in multidrug resistance and the lack of an effective vaccine. The spp.
View Article and Find Full Text PDFAdv Parasitol
October 2024
Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!