Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (mHtt) protein leading to degeneration of striatal neurons. Excitotoxicity, consecutive to overstimulation of N-methyl d-aspartate receptors (NMDARs) has a pivotal role in many neurological disorders including HD. Mutant Htt causes enhanced NMDA sensitivity, alteration of NMDAR expression and localization in neurons. Excitotoxic events initiate neuronal death in numerous ways, including activation of apoptotic cascades. Among the NMDAR subunits involved in glutamatergic-mediated excitotoxicity, GluN2B has been extensively reported. In addition to excitotoxicity, alteration of cholesterol metabolism has been observed in HD, with a decrease of cholesterol precursor synthesis along with an increase of cholesterol accumulation, which is deleterious for neurons. Expression of Cholesterol Hydroxylase enzyme, CYP46A1, which converts cholesterol into 24 S-hydroxycholesterol is down-regulated in HD. We found that CYP46A1 overexpression is beneficial in HD neurons and mouse model, but the mechanisms involved still remain unclear. In this study we addressed the effect of CYP46A1 on NMDAR-mediated excitotoxicity in HD primary neurons and its role in modulating cholesterol and localization of GLUN2B in lipid rafts. We showed that CYP46A1 is protective against NMDAR-mediated excitotoxicity in two different HD neuronal cell models. Cholesterol as well as GluN2B level in lipid raft, are significantly increased by mHtt. Despite a clear effect of CYP46A1 in reducing cholesterol content in lipid raft extracts from wild type neurons, CYP46A1 overexpression in HD neurons could not normalize the increased cholesterol levels in lipid rafts. This study highlights the beneficial role of CYP46A1 against NMDAR-mediated excitotoxicity and gives further insights into the cellular mechanisms underlying CYP46A1-mediated neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2018.07.019DOI Listing

Publication Analysis

Top Keywords

lipid raft
12
nmdar-mediated excitotoxicity
12
cholesterol
9
cyp46a1
8
huntington's disease
8
cyp46a1 overexpression
8
cyp46a1 nmdar-mediated
8
lipid rafts
8
excitotoxicity
7
neurons
7

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Terahertz (THz) radiation has gained attention due to technological advancements, but its biological effects remain unclear. We investigated the impact of 2.3 THz radiation on SK-MEL-28 cells using metabolomic and gene network analysis.

View Article and Find Full Text PDF

Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.

View Article and Find Full Text PDF

Unlabelled: Streptolysin O (SLO) is a virulence determinant of group A (), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!