We experimentally study the Goos-Hänchen shift of a focused Gaussian optical beam in the critical region of incidence. We directly measure the beam's shift evaluated from the displacement of the location of the beam's intensity peak and its centroid by a novel image analysis method. We verify that the evaluation method has a dramatic impact on the physics of beam shift phenomena. The influence of wavelength, beam waist, and propagation distance on the beam shift is studied. Our experimental results confirm recent theoretical predictions about the composite Goos-Hänchen shift, including the observation of negative shifts of the beam's intensity peak.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.004037DOI Listing

Publication Analysis

Top Keywords

goos-hänchen shift
12
composite goos-hänchen
8
optical beam
8
beam's intensity
8
intensity peak
8
beam shift
8
shift
6
beam
5
direct measurement
4
measurement composite
4

Similar Publications

A new sensing scheme, capable of measuring various quantities using the Goos-Häanchen shift in the polarization phase domain, is proposed. The phase retardation between s and p polarizations on total reflection is enhanced by using multiple reflections in a plane-parallel transparent plate. This phase shift can be sensitively and stably detected using an in-line heterodyne method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!