Reducing the exposure to X-ray radiation while maintaining a clinically acceptable image quality is desirable in various CT applications. To realize low-dose CT (LdCT) imaging, model-based iterative reconstruction (MBIR) algorithms are widely adopted, but they require proper prior knowledge assumptions in the sinogram and/or image domains and involve tedious manual optimization of multiple parameters. In this paper, we propose a deep learning (DL)-based strategy for MBIR to simultaneously address prior knowledge design and MBIR parameter selection in one optimization framework. Specifically, a parameterized plug-and-play alternating direction method of multipliers (3pADMM) is proposed for the general penalized weighted least-squares model, and then, by adopting the basic idea of DL, the parameterized plug-and-play (3p) prior and the related parameters are optimized simultaneously in a single framework using a large number of training data. The main contribution of this paper is that the 3p prior and the related parameters in the proposed 3pADMM framework can be supervised and optimized simultaneously to achieve robust LdCT reconstruction performance. Experimental results obtained on clinical patient datasets demonstrate that the proposed method can achieve promising gains over existing algorithms for LdCT image reconstruction in terms of noise-induced artifact suppression and edge detail preservation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2018.2865202DOI Listing

Publication Analysis

Top Keywords

parameterized plug-and-play
12
prior knowledge
8
prior parameters
8
optimized simultaneously
8
optimizing parameterized
4
plug-and-play admm
4
admm iterative
4
iterative low-dose
4
reconstruction
4
low-dose reconstruction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!