We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine, homography or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging PF, TSS and Caltech-101 datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2018.2865351DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
network architecture
8
architecture geometric
8
geometric matching
8
matching
5
matching address
4
address problem
4
problem determining
4
determining correspondences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!