A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions. | LitMetric

Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P < 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P < 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier (surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2018.2864335DOI Listing

Publication Analysis

Top Keywords

classification hand
8
hand motions
8
emg types
8
classification
5
ann
5
multiday evaluation
4
evaluation techniques
4
techniques emg-based
4
emg-based classification
4
motions currently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!