Many new clinical investigations of microwave breast imaging have been published in recent years. Trials with over one hundred participants have indicated the potential of microwave imaging to detect breast cancer, with particularly encouraging sensitivity results reported from women with dense breasts. The next phase of clinical trials will involve larger and more diverse populations, including women with no breast abnormalities or benign breast diseases. These trials will need to address clinical efficacy in terms of sensitivity and specificity. A number of challenges exist when using microwave imaging with broad populations: 1) addressing the substantial variance in breast composition observed in the population and 2) achieving high specificity given differences between individuals. This paper analyses these challenges using a diverse phantom set which models the variance in breast composition and tumor shape and size seen in the population. The data show that the sensitivity of microwave breast imaging in breasts of differing density can suffer if patient-specific beamforming is not used. Moreover, the results suggest that achieving high specificity in dense breasts may be difficult, but that patient-specific beamforming does not adversely affect the expected specificity. In summary, this paper finds that patient-specific beamforming has a tangible impact on expected sensitivity in experimental cases and that achieving high specificity in dense breasts may be challenging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2018.2864150 | DOI Listing |
Nanoscale
January 2025
Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.
All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Ningbo Innovation Center, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The frequency-modulated continuous-wave (FMCW) technology combined with optical phased array (OPA) is promising for the all-solid-state light detection and ranging (LiDAR). We propose and experimentally demonstrate a silicon integrated OPA combined with an optical frequency microcomb for parallel LiDAR system. For realizing the parallel wavelengths emission consistent with Rayleigh criterion, the wide waveguide beyond single mode region combined with the bound state in the continuum (BIC) effect is harnessed to obtain an ultra-long optical grating antenna array.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.
View Article and Find Full Text PDFAll-sky 1 km land surface temperature (LST) data are urgently needed. Two widely applied approaches to derive such LST data are merging thermal infrared remote sensing (TIR)-passive microwave remote sensing (PMW) observations and merging TIR reanalysis data. However, as only the Moderate Resolution Imaging Spectroradiometer (MODIS) is adopted as the TIR source for merging, current 1 km all-sky LST products are limited to the MODIS observation time.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!