Spinal muscular atrophy (SMA) is one of the most common childhood onset neurodegenerative disorders in global health whereby novel biomarkers and therapeutic targets are sorely needed. SMA is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons in the brain stem and spinal cord that leads to mortality in infants worldwide. In majority of the patients, SMA is caused by homozygous deletion of the SMN1 gene. The clinical spectrum of the SMA displays, however, large person-to-person variations where the underlying mechanisms are poorly understood. We report in this study transcriptomics insights gleaned from patients with the severe type I (GM03813 and GM09677) and the mild type III. Pathway enrichment and functional analysis showed that especially extracellular matrix (ECM), synapse organization, and ECM receptor interaction pathways were affected. Among the neural ECM components, hyaluronan and proteoglycan link protein (HAPLN1), which is a key triggering molecule of the perineuronal net (PNN), was significantly downregulated in type I fibroblasts compared to type III. PNN is a specialized form of neural ECM around the neuronal cell bodies and dendrites in the central nervous system. In addition, we evaluated the PNN expression in vitro in a model established by SMN silencing in the PC12 rat pheochromocytoma cell line which can be differentiated into neurons with nerve growth factor treatment. In this neuronal in vitro model, we found that HAPLN1 showed a significant 50% decrease. Our results describe the association between PNN elements, especially HAPLN1, and SMA pathophysiology for the first time. These observations collectively inform future translational research on SMA for discovery of novel molecular targets for diagnostics and precision medicine innovation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2018.0106DOI Listing

Publication Analysis

Top Keywords

perineuronal net
8
spinal muscular
8
transcriptomics insights
8
type iii
8
neural ecm
8
vitro model
8
sma
6
net elements
4
elements contribute
4
contribute pathophysiology
4

Similar Publications

Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex.

View Article and Find Full Text PDF

Perineuronal nets (PNNs), are neuron-specific substructures within the neural extracellular matrix (ECM). These reticular structures form on a very small subset of neurons in the central nervous system (CNS) and yet have a profound impact in regulating neuronal development and physiology. PNNs are well-established as key regulators of plasticity in the CNS.

View Article and Find Full Text PDF

Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield CA1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth postnatal week (Ramsaran et al., 2023).

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex.

View Article and Find Full Text PDF

Prelimbic cortex perineuronal net expression and social behavior: Impact of adolescent intermittent ethanol exposure.

Neuropharmacology

January 2025

Neurobiology of Adolescent Drinking in Adulthood Consortium, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, 13902-6000, USA. Electronic address:

Adolescent intermittent ethanol (AIE) exposure in rats leads to social deficits. Parvalbumin (PV) expressing fast-spiking interneurons in the prelimbic cortex (PrL) contribute to social behavior, and perineuronal nets (PNNs) within the PrL preferentially encompass and regulate PV interneurons. AIE exposure increases PNNs, but it is unknown if this upregulation contributes to AIE-induced social impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!