Graphene Quantum Dots Based Systems As HIV Inhibitors.

Bioconjug Chem

Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven , Herestraat 49 , B-3000 Leuven , Belgium.

Published: September 2018

Graphene quantum dots (GQD) are the next generation of nanomaterials with great potential in drug delivery and target-specific HIV inhibition. In this study we investigated the antiviral activity of graphene based nanomaterials by using water-soluble GQD synthesized from multiwalled carbon nanotubes (MWCNT) through prolonged acidic oxidation and exfoliation and compared their anti-HIV activity with that exerted by reverse transcriptase inhibitors (RTI) conjugated with the same nanomaterial. The antiretroviral agents chosen in this study, CHI499 and CDF119, belong to the class of non-nucleoside reverse transcriptase inhibitors (NNRTI). From this study emerged the RTI-conjugated compound GQD-CHI499 as a good potential candidate for HIV treatment, showing an IC of 0.09 μg/mL and an EC value in cell of 0.066 μg/mL. The target of action in the replicative cycle of HIV of the drug conjugated samples GQD-CHI499 and GQD-CDF119 was also investigated by a time of addition (TOA) method, showing for both conjugated samples a mechanism of action similar to that exerted by NNRTI drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.8b00448DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
reverse transcriptase
8
transcriptase inhibitors
8
conjugated samples
8
dots based
4
based systems
4
hiv
4
systems hiv
4
hiv inhibitors
4

Similar Publications

Enhancing Gene Delivery to Breast Cancer with Highly Efficient siRNA Loading and pH-Responsive Small Extracellular Vesicles.

ACS Biomater Sci Eng

December 2024

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.

Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs.

View Article and Find Full Text PDF

Multidirectional Sliding Ferroelectricity of Rhombohedral-Stacked InSe for Reconfigurable Photovoltaics and Imaging Applications.

Adv Mater

December 2024

Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.

Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.

View Article and Find Full Text PDF

Synthetic opioids, especially fentanyl and its analogs, have created an epidemic of abuse and significantly increased overdose deaths in the United States. Current detection methods have drawbacks in their sensitivity, scalability, and portability that limit field-based application to promote public health and safety. The need to detect trace amounts of fentanyl in complex mixtures with other drugs or interferents, and the continued emergence of new fentanyl analogs, further complicates detection.

View Article and Find Full Text PDF

Tunable Topological Transitions Probed by the Quantum Hall Effect in Twisted Double Bilayer Graphene.

Nano Lett

December 2024

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.

The moiré system provides a tunable platform for investigating exotic quantum phases. Particularly, the displacement field is crucial for tuning the electronic structures and topological properties of twisted double bilayer graphene (TDBG). Here, we present a series of -tunable topological transitions by the evolution of quantum Hall phases (QHPs) in the valence bands of TDBG.

View Article and Find Full Text PDF

In this study, the use of functionalized graphene quantum dots (GQDs) as a fluorescent probe has been investigated for the quantitative determination of galantamine, a choline esterase inhibitor used for the treatment of Alzheimer's disease. The GQDs exhibit a significant quenching in their fluorescence intensity upon interaction with galantamine allowing for sensitive and selective detection of the drug. This quenching process follows a dynamic pattern with a linear relationship between fluorescence intensity and the concentration of galantamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!