Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191287 | PMC |
http://dx.doi.org/10.7554/eLife.32991 | DOI Listing |
FASEB Bioadv
January 2025
Department of Chemistry, Graduate School of Science Chiba University Chiba Japan.
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.
Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.
View Article and Find Full Text PDFZhongguo Yi Xue Ke Xue Yuan Xue Bao
December 2024
Health and Medical Department, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.
Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly's ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!