Lauren classification is a pathology-based gastric cancer (GC) subtyping system, which is widely used in the clinical treatment of patients with GC. However, genome-scale molecular characteristics to distinguish between diffuse (DF) and intestinal (IT) GC remain incompletely characterized, particularly at the transcriptional regulatory level. In the present study, gene regulatory networks were constructed using the Passing Attributes between Networks for Data Assimilation (PANDA) algorithm for DF, IT and mixed GC. The results indicated that >85% of transcription factor (TF)-target edges were shared among all three GC subtypes. In TF enrichment analysis, 13 TFs, including nuclear transcription factor Y subunit α (NFYA) and forkhead box L1, were activated in DF GC, whereas 8 TFs, including RELA proto-oncogene and T-cell leukemia homeobox 1 (TLX1), were activated in IT GC. Out of these identified TFs, NFYA [Hazard ratio (HR) (95% confidence interval, CI)=0.560 (0.349, 0.900), P=0.017] and sex determining region Y [HR (95% CI)=0.603 (0.375, 0.969), P=0.037] were identified as independent prognostic factors in DF GC, but not in IT GC, whereas TLX1 [HR (95% CI)=0.547 (0.321, 0.9325), P=0.027] was identified as an independent prognostic factor in IT GC, but not in DF GC. Verification at the cellular level was also performed; interference of NFYA expression using small interfering RNA in MGC803 cells (DF GC-derived cells) markedly inhibited cell growth and colony formation. Similar effects were also detected in SGC-7901 cells (IT GC-derived cells), but to a lesser extent. In conclusion, identified gene regulatory networks differed between distinct GC subtypes, in which the same TFs had different biological effects. Specifically, NFYA was identified as a DF subtype-specific independent prognostic factor in GC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192729 | PMC |
http://dx.doi.org/10.3892/ijo.2018.4519 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, Klosterneuburg AT-3400, Austria.
Many biological systems operate near the physical limits to their performance, suggesting that aspects of their behavior and underlying mechanisms could be derived from optimization principles. However, such principles have often been applied only in simplified models. Here, we explore a detailed mechanistic model of the gap gene network in the embryo, optimizing its 50+ parameters to maximize the information that gene expression levels provide about nuclear positions.
View Article and Find Full Text PDFSci Adv
January 2025
Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!