Local inhibition of matrix metalloproteinases reduced M2 macrophage activity and impeded recovery in spinal cord transected rats after treatment with fibroblast growth factor-1 and nerve grafts.

Neural Regen Res

Department and Institute of Pharmacology, National Yang-Ming University; Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital; Center for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, China.

Published: August 2018

Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at T, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast growth factor-1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP-2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS cells and that the migration of the arginase-1 population could be regulated locally. Simultaneous application of MMP inhibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108206PMC
http://dx.doi.org/10.4103/1673-5374.235302DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
cord transected
12
transected rats
12
fibroblast growth
12
growth factor-1
12
nerve grafts
12
mmp inhibitor
12
spinal
8
recovery spinal
8
treatment fibroblast
8

Similar Publications

Radiofrequency ablation (RFA) is an interventional procedure that has been used to treat chronic back pain for over 50 years; this unique case report demonstrates the effectiveness of pulsed radiofrequency ablation (PRFA) on the dorsal root ganglion (DRG) in the treatment of chronic radicular pain (Russo et al., 2021, J Pain Res, 14, 3897). The RFA provides pain relief by using thermal energy to disrupt peripheral nerves carrying nociceptive signals back to the central nervous system (Abd-Elsayed et al.

View Article and Find Full Text PDF

The hypothalamus is the gray matter of the ventral portion of the diencephalon. The hypothalamus is the higher center of the autonomic nervous system and is involved in the regulation of various homeostatic mechanisms. It also modulates respiration by facilitating the respiratory network.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!