In this paper, an aqueous-based approach is introduced for facile, fast, and green synthesis of gradient-alloyed Fe-doped ZnSe(S)@ZnSe(S) core:shell quantum dots (QDs) with intense and stable emission. Co-utilization of co-nucleation and growth doping strategies, along with systematic optimization of emission intensity, provide a well-controllable/general method to achieve internally doped QDs (d-dots) with intense emission. Results indicate that the alloyed ZnSe(S)@ZnSe(S) core:shell QDs have a gradient structure that consists of a Se-rich core and a S-rich shell. This gradient structure cannot only passivate the core d-dots by means of the wider band gap S-rich shell, but also minimizes the lattice mismatch between alloyed core-shell structures. Using this novel strategy and utilizing the wider band gap S-rich shell can obviously increase the cyan emission intensity and also drastically improve the emission stability against chemical and optical corrosion. Furthermore, the cytotoxicity experiments indicate that the obtained d-dots are nontoxic nanomaterials, and thus they can be considered as a promising alternative to conventional Cd-based QDs for fluorescent probes in biological fields. Finally, it is demonstrated that the present low-toxicity and gradient-alloyed core:shell d-dots can be used as sensitive chemical detectors for Pb ions with excellent selectivity, small detection limit, and rapid response time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aada29 | DOI Listing |
Bioact Mater
June 2024
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Small
April 2023
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China.
Manipulating the separation and transfer behaviors of charges has long been pursued for promoting the photoelectrochemical (PEC) hydrogen generation based on II-VI quantum dot (QDs), but remains challenging due to the lack of effective strategies. Herein, a facile strategy is reported to regulate the recombination and transfer of interfacial charges through tuning the surface stoichiometry of heterostructured QDs. Using this method, it is demonstrated that the PEC cells based on CdSe-(Se S ) -(CdS) core/shell QDs with a proper S /Cd ratio exhibits a remarkably improved photocurrent density (≈18.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2019
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
This study reports a novel hollow CuO@CuS material used as a catalyst for enzyme free glucose detection. CuO@CuS is successfully synthesized by a facile in-situ growth method. The obtained CuO@CuS exhibits a hollow structure with a CuS rich surface.
View Article and Find Full Text PDFNanotechnology
November 2018
Department of Physics, Faculty of Science, Arak University, Arak 3815688394, Iran. Institute of Nanoscience and Nanotechnology, Arak University, Arak, Iran. Department of Chemistry, Faculty of Science, Ilam University, 65315-516, Ilam, Iran.
In this paper, an aqueous-based approach is introduced for facile, fast, and green synthesis of gradient-alloyed Fe-doped ZnSe(S)@ZnSe(S) core:shell quantum dots (QDs) with intense and stable emission. Co-utilization of co-nucleation and growth doping strategies, along with systematic optimization of emission intensity, provide a well-controllable/general method to achieve internally doped QDs (d-dots) with intense emission. Results indicate that the alloyed ZnSe(S)@ZnSe(S) core:shell QDs have a gradient structure that consists of a Se-rich core and a S-rich shell.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2012
Steacie Institute for Molecular Sciences, National Research Council of Canada , Ottawa, Ontario K1A 0R6, Canada.
Highly emissive ultraviolet ZnSeS nanocrystals (NCs), with a core-shell-like structure, were designed and synthesized via a one-step noninjection approach in 1-octadecene (ODE). These ultraviolet ZnSeS NCs exhibit bright bandgap emission with high color purity and little trap emission. With full width at half-maximum (fwhm) of ∼21 nm only, photoluminescent (PL) quantum yield (QY) of ∼60% was estimated for one ensemble dispersed in toluene exhibiting bandgap absorption peaking at ∼380 nm and bandgap emission at ∼389 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!