The new class of fully silicon-compatible hafnia-based ferroelectrics with high switchable polarization and good endurance and thickness scalability shows a strong promise for new generations of logic and memory devices. Among other factors, their competitiveness depends on the power efficiency that requires reliable low-voltage operation. Here, we show genuine ferroelectric switching in Hf ZrO (HZO) layers in the application-relevant capacitor geometry, for driving signals as low as 800 mV and coercive voltage below 500 mV. Enhanced piezoresponse force microscopy with sub-picometer sensitivity allowed for probing individual polarization domains under the top electrode and performing a detailed analysis of hysteretic switching. The authentic local piezoelectric loops and domain wall movement under bias attest to the true ferroelectric nature of the detected nanodomains. The systematic analysis of local piezoresponse loop arrays reveals a totally unexpected thickness dependence of the coercive fields in HZO capacitors. The thickness decrease from 10 to 7 nm is associated with a remarkably strong decrease of the coercive field, with about 50% of the capacitor area switched at coercive voltages ≤0.5 V. Our explanation consistent with the experimental data involves a change of mechanism of nuclei-assisted switching when the thickness decreases below 10 nm. The practical implication of this effect is a robust ferroelectric switching under the millivolt-range driving signal, which is not expected for the standard coercive voltage scaling law. These results demonstrate a strong potential for further aggressive thickness reduction of HZO layers for low-power electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b07988DOI Listing

Publication Analysis

Top Keywords

ferroelectric switching
8
hzo layers
8
coercive voltage
8
thickness
5
coercive
5
genuinely ferroelectric
4
ferroelectric sub-1-volt-switchable
4
sub-1-volt-switchable nanodomains
4
nanodomains zro
4
zro ultrathin
4

Similar Publications

Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Altermagnetism is a new class of material with zero net magnetization, but having a nonrelativistic spin-split band structure. Here, we investigate the multifunctional properties of the hexagonal wurtzite MnO (-MnO). -MnO has a direct band gap of 0.

View Article and Find Full Text PDF

The discovery of ferroelectric phases in HfO-based films has reignited interest in ferroelectrics and their application in resistive switching (RS) devices. This study investigates the pivotal role of electrodes in facilitating the Schottky-to-Ohmic transition (SOT) observed in devices consisting of ultrathin epitaxial ferroelectric HfYO (YHO) films deposited on LaSrMnO-buffered Nb-doped SrTiO (NbSTO|LSMO) with Ti|Au top electrodes. These findings indicate combined filamentary RS and ferroelectric switching occurs in devices with designed electrodes, having an ON/OFF ratio of over 100 during about 10 cycles.

View Article and Find Full Text PDF

Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!