Transcatheter aortic valve replacement (TAVR) is being extended to younger patients. However, TAVR-compatible bioprostheses are based on xenogeneic materials with limited durability. Off-the-shelf tissue-engineered heart valves (TEHVs) with remodeling capacity may overcome the shortcomings of current TAVR devices. Here, we develop for the first time a TEHV for TAVR, based on human cell-derived extracellular matrix and integrated into a state-of-the-art stent for TAVR. The TEHVs, characterized by a dense acellular collagenous matrix, demonstrated in vitro functionality under aortic pressure conditions (n = 4). Next, transapical TAVR feasibility and in vivo TEHV functionality were assessed in acute studies (n = 5) in sheep. The valves successfully coped with the aortic environment, showing normal leaflet motion, free coronary flow, and absence of stenosis or paravalvular leak. At explantation, TEHVs presented full structural integrity and initial cell infiltration. Its long-term performance proven, such TEHV could fulfill the need for next-generation lifelong TAVR prostheses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12265-018-9821-1 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
December 2024
Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.
View Article and Find Full Text PDFBreast Cancer (Dove Med Press)
January 2025
Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
Purpose: The high mortality rate of breast cancer motivates researchers to search for effective treatments. Due to their ability to simulate human conditions, xenograft models such as CDX (Cell line-Derived Xenografts) and PDX (Patient-Derived Xenografts) have gained popularity in pre-clinical research. The choice of xenograft technique is influenced by the type of tumor employed, particularly in more aggressive tumor models like TNBC with metastases.
View Article and Find Full Text PDFIntroduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Nat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.
Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!