Various physical properties of functional materials can be induced by controlling their chemical molecular structures. Therefore, molecular design is crucial in the fields of engineering and materials science. With its remarkable development in various fields, machine learning combined with molecular simulation has recently been found to be effective at predicting the electronic structure of materials (Nat. Commun., 2017, 8, 872 and Nat. Commun., 2017, 8, 13890). However, previous studies have used similar microscale information as input and output data for machine learning, i.e., molecular structures and electronic structures. In this study, we determined whether multiscale data can be predicted using machine learning via a self-assembly functional material system. In particular, we investigated whether machine learning can be used to predict dispersion and viscosity, as the representative physical properties of a self-assembled surfactant solution, from the chemical molecular structures of a surfactant. The results showed that relatively accurate information on these physical properties can be predicted from the molecular structure, suggesting that machine learning can be used to predict multiscale systems, such as surfactant molecules, self-assembled micelle structures, and physical properties of solutions. The results of this study will aid in further development of the application of machine learning to materials science and molecular design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr03332c | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Behav Res Methods
January 2025
CAP Team, Centre de Recherche en Neurosciences de Lyon - INSERM U1028 - CNRS UMR 5292 - UCBL - UJM, 95 Boulevard Pinel, 69675, Bron, France.
J Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Software Convergence, Seoul Women's University, Hwarango 621, Nowongu, Seoul, 01797, Republic of Korea.
In this paper, we propose a method to address the class imbalance learning in the classification of focal liver lesions (FLLs) from abdominal CT images. Class imbalance is a significant challenge in medical image analysis, making it difficult for machine learning models to learn to classify them accurately. To overcome this, we propose a class-wise combination of mixture-based data augmentation (CCDA) method that uses two mixture-based data augmentation techniques, MixUp and AugMix.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institute of Physics, Saratov State University, Saratov, 410012, Russia.
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!