Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno for the evolution of X inactivation in mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-018-0221-yDOI Listing

Publication Analysis

Top Keywords

dosage compensation
20
genomic imprinting
8
sex chromosomes
8
reduced expression
8
evolution dosage
8
dosage
6
compensation
5
imprinting mediates
4
mediates dosage
4
compensation young
4

Similar Publications

While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.

View Article and Find Full Text PDF

Objectives: This case series describes adults with aquaporin 4 immunoglobulin G-seropositive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) who switched treatment from eculizumab to satralizumab.

Methods: Case information for patients with AQP4-IgG+ NMOSD who received satralizumab for ≥6 months was obtained from US healthcare providers from April 2022 to January 2024. Patient characteristics, examination findings, diagnostic test results, treatment response, and adverse events were recorded.

View Article and Find Full Text PDF

Objectives: To determine whether extending anti-CGRP mAb treatment beyond 3 years influences migraine course, we analyzed migraine frequency during the first month of treatment discontinuation following three 12-month treatment cycles (Ts).

Methods: This multicenter, prospective, real-world study enrolled 212 patients with high-frequency episodic migraine (HFEM) or chronic migraine (CM) who completed three consecutive Ts of subcutaneous anti-CGRP mAbs. Discontinuation periods (D1, D2, D3) were defined as the first month after T1, T2, and T3, respectively.

View Article and Find Full Text PDF

Genes on the X chromosome are extensively expressed in the human brain. However, little is known for the X chromosome's impact on the brain anatomy, microstructure, and functional networks. We examined 1045 complex brain imaging traits from 38,529 participants in the UK Biobank.

View Article and Find Full Text PDF

Introduction: The large-scale approval of anti-amyloid monoclonal antibodies for treating Alzheimer's disease (AD) has raised concerns about their safety due to treatment-emergent amyloid-related imaging abnormalities (ARIA).

Methods: We present two cases of patients diagnosed with mild cognitive impairment due to AD who were enrolled in the GRADUATE I clinical trial. They received subcutaneous gantenerumab every two weeks during the study period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!