The genetic etiology of many complex diseases is highly heterogeneous. A complex disease can be caused by multiple mutations within the same gene or mutations in multiple genes at various genomic loci. Although these disease-susceptibility mutations can be collectively common in the population, they are often individually rare or even private to certain families. Family-based studies are powerful for detecting rare variants enriched in families, which is an important feature for sequencing studies due to the heterogeneous nature of rare variants. In addition, family designs can provide robust protection against population stratification. Nevertheless, statistical methods for analyzing family-based sequencing data are underdeveloped, especially those accounting for heterogeneous etiology of complex diseases. In this article, we introduce a random field framework for detecting gene-phenotype associations in family-based sequencing studies, referred to as family-based genetic random field (FGRF). Similar to existing family-based association tests, FGRF could utilize within-family and between-family information separately or jointly to test an association. We demonstrate that FGRF has comparable statistical power with existing methods when there is no genetic heterogeneity, but can improve statistical power when there is genetic heterogeneity across families. The proposed method also shares the same advantages with the conventional family-based association tests (, being robust to population stratification). Finally, we applied the proposed method to a sequencing data from the Minnesota Twin Family Study, and revealed several genes, including , potentially associated with alcohol dependence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216585 | PMC |
http://dx.doi.org/10.1534/genetics.118.301266 | DOI Listing |
Genome Med
January 2025
Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.
Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.
Ultrasound Med Biol
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:
Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.
View Article and Find Full Text PDFNeuroscience
January 2025
Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, South Australia, Australia.
Physical and motor fatigue are debilitating symptoms common in multiple sclerosis (MS). Lifestyle interventions may be effective in managing MS-related fatigue. This scoping review aims to: (i) identify and summarise lifestyle interventions including those focused on diet, physical activity, and sleep, or multicomponent interventions for physical and motor fatigue management in MS; and (ii) provide recommendations for future research in this area.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:
Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Physics, Indian Institute of Science Education and Research Bhopal, Bypass Road Bhauri, Bhopal, 462066, INDIA.
We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!