Platelets respond to vascular injury via surface receptor stimulation and signaling events to trigger aggregation, procoagulant activation, and granule secretion during hemostasis, thrombosis, and vascular remodeling. Platelets contain three major types of secretory granules including dense granules (or δ-granules, DGs), α-granules (AGs), and lysosomes. The contents of platelet granules are specific. Platelet DGs store polyphosphate and small molecules such as ADP, ATP, Ca, and serotonin, while AGs package most of the proteins that platelets release. The platelet DGs and AGs are regarded as being budded from the endosomes and the -Golgi network (TGN), respectively, and then matured from multivesicular bodies (MVBs). However, the sorting machineries between DGs and AGs are different. Inherited platelet disorders are associated with deficiency of DGs and AGs, leading to bleeding diathesis in patients with Hermansky-Pudlak syndrome (HPS), gray platelet syndrome (GPS), and arthrogryposis, renal dysfunction, and cholestasis syndrome (ARC). Here, we reviewed the current understanding about how DGs differ from AGs in structure, biogenesis, and function. In particular, we focus on the sorting machineries that are involved in the formation of these two types of granules to provide insights into their diverse biological functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127676 | PMC |
http://dx.doi.org/10.1042/BSR20180458 | DOI Listing |
Arch Insect Biochem Physiol
January 2025
Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India.
RNA interference (RNAi) technology is widely used in gene functional studies and has been shown to be a promising next generation alternative for insect pest management. To understand the efficiency of RNAi machinery in Leucinodes orbonalis (L. orbonalis) Guenee, a destructive pest of eggplant, core RNAi pathway genes Argonaute-2, Dicer-2, Loquacious, and Sid-1 were mined from the transcriptome and characterized.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFBiochemistry
January 2025
Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!