In fear conditioning, more efficient sensory processing of a stimulus (the conditioned stimulus, CS) that has acquired motivational relevance by being paired with an aversive event (the unconditioned stimulus, US) has been associated with increased cortical gain in early sensory brain areas (Miskovic and Keil, 2012). Further, this sensory gain modulation related to short-term plasticity changes occurs independently of aware cognitive anticipation of the aversive US, pointing toward implicit learning mechanisms (Moratti and Keil, 2009). However, it is unknown how quickly the implicit learning of CS-US associations results in the adaptation of cortical gain. Here, using steady-state visually evoked fields derived from human Magnetoencephalography (MEG) recordings in two experiments ( = 33, 17 females and 16 males), we show that stimulus-driven neuromagnetic oscillatory activity increases and decreases quickly as a function of associative strength within three or four trials, as predicted by a computationally implemented Rescorla-Wagner model with the highest learning rate. These ultrafast cortical gain adaptations are restricted to early visual cortex using a delay fear conditioning procedure. Short interval (500 ms) trace conditioning resulted in the same ultrafast activity modulations by associative strength, but in a complex occipito-parieto-temporo-frontal network. Granger causal analysis revealed that reverberating top-down and bottom-up influences between anterior and posterior brain regions during trace conditioning characterized this network. Critically, in both delay and trace conditioning, ultrafast cortical gain modulations as a function of associative strength occurred independently of conscious US anticipation. In ever-changing environments, learned associations between a cue and an aversive consequence must change under new stimulus-consequence contingencies to be adaptive. What predicts potential dangers now might be meaningless in the next situation. Predictive cues are prioritized, as reflected by increased sensory cortex activity for these cues. However, this modulation also must adapt to altered stimulus-consequence contingencies. Here, we show that human visual cortex activity can be modulated quickly according to ultrafast contingency changes within a few learning trials. This finding extends to frontal brain regions when the cue and the aversive event are separated in time. Critically, this ultrafast updating process occurs orthogonally to aware aversive outcome anticipation and therefore relies on unconscious implicit learning mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596159 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0977-18.2018 | DOI Listing |
Genetic studies on the protist, provide a glimpse into the unexpectedly rich world of intracellular patterning that unfolds within the ciliate cell cortex. Ciliate pattern studies provide a useful counterpoint to animal models of pattern formation in that the unicellular model draws attention away from fields of cells (or nuclei) as the principal players in the metazoan pattern paradigm, focusing instead on fields of ciliated basal bodies serving as sources of positional information. In this study, we identify , a Polo kinase of , that serves as an important factor driving global, circumferential pattern.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFJ Neurosci
January 2025
Arizona State University, Department of Psychology, Tempe, AZ, 85287 USA.
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.
View Article and Find Full Text PDFBone
December 2024
Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!