Background: Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism.
Methods: These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards.
Results: Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations.
Conclusion: This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090659 | PMC |
http://dx.doi.org/10.1186/s12936-018-2433-z | DOI Listing |
Anal Chem
January 2025
Environment Research Institute, Shandong University, Qingdao 266237, China.
Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Department of Chemistry & Biochemistry, Ohio University, Athens, OH, USA.
The valid method was developed for analyzing empagliflozin in serum/plasma/urine using a molecularly imprinted ghost polymer-solid-phase extraction approach (MISPE) with liquid chromatographic methodology. Methacrylic acid (MAA) was used as the monomer, 2,2 azobis isobutyronitrile as the initiator and ethylene glycol dimethacrylate as the cross-linker in the free radical polymerization procedure. Empagliflozin was loaded onto the polymer and eluted with 1 mL of a 9:1 MeOH:acetic acid solution.
View Article and Find Full Text PDFDrug Test Anal
January 2025
European Monitoring Center for Emerging Doping Agents, German Sport University Cologne, Cologne, Germany.
A cost minimized immunoaffinity protocol was developed, which allows the direct purification of ERAs (urinary and recombinant human EPO, Darbepoetin, EPO-Fc, CERA) from human urine. The method applies magnetic beads and needs no covalent immobilization of the capture antibody. It requires only 10 mL of urine, 1 μg of anti-EPO antibody, and 25 μL of bead slurry.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul Jensens Boulevard 99 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University 8000 Aarhus C, Denmark.
Objective: This exploratory study investigates if neurofilament light chain (NfL) is excreted in the urine and whether this depends on plasma NfL (pNfL) levels and kidney function in terms of eGFR and U-albumin-creatinine ratio (uACR).
Methods: Using a computer algorithm, we identified excess urine and plasma from routine testing of uACR and eGFR in patients 45-50 years old. Up to 17 paired urine-plasma samples in each of six categories of kidney function defined by uACR and eGFR were analysed for NfL, and the urinary NfL-creatinine ratio (uNCR) was calculated to correct for urine dilution.
Clin Chim Acta
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang, China. Electronic address:
Noninvasive detection of BK virus, for early detection of BK polyomavirus-associated nephropathy post-renal transplantation, is currently an active subject of investigation. In this study, we developed and validated a novel risk score diagnostic assay (PymiR Score) based on measurements of three urine miRNAs, including BKV-related miRNA (bkv-miR-B1-5p), polyomavirus-related miRNA (bkv-miR-B1-3p) and renal tubular injury-related miRNA (miR-21-5p), by quantitative polymerase chain reaction. The limit of detection of the three miRNAs was 2 × 10 copies/mL, while the intra- and inter-assay coefficients of variation were in the ranges of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!