The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long-term changes to the STN->EP synapse. To test this hypothesis, we recorded in the whole-cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre-synaptic stimulation generated modest long-term depression (LTD) in the STN->EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre-before post-as well as for post- before pre-synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post-synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back-propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post-synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de-correlation of STN and EP firing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.14105 | DOI Listing |
Elife
January 2025
Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.
Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.
View Article and Find Full Text PDFCogn Neurodyn
October 2024
College of Science, Donghua University, Shanghai, 201620 China.
Proc Natl Acad Sci U S A
November 2024
Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma 07122, Spain.
Reactive inhibitory control is crucial for survival. Traditionally, this control in mammals was attributed solely to the hyperdirect pathway, with cortical control signals flowing unidirectionally from the subthalamic nucleus (STN) to basal ganglia output regions. Yet recent findings have put this model into question, suggesting that the STN is assisted in stopping actions through ascending control signals to the striatum mediated by the external globus pallidus (GPe).
View Article and Find Full Text PDFNeurobiol Dis
October 2024
Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, 1081, BT, Amsterdam, the Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!