Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram-positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram-negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB-SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.12999 | DOI Listing |
Int J Mol Sci
December 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.
View Article and Find Full Text PDFMolecules
December 2024
Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:
Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Universidad Politécnica de Madrid (UPM), E.T.S de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y del Medio Ambiente, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain. Electronic address:
This work examines the photocatalytic capacity of FeO-TiO catalysts for inactivating Enterococcus faecalis in water and compares it to a peroxide-assisted process. The influence of HO, PMS, pH, and temperature is assessed. Material stability and free radical species involved in disinfection are also evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!