Human motion during walking provides biometric information which can be utilized to quantify the similarity between two persons or identify a person. The purpose of this study was to develop a method for identifying a person using their walking motion when another walking motion under different conditions is given. This type of situation occurs frequently in forensic gait science. Twenty-eight subjects were asked to walk in a gait laboratory, and the positions of their joints were tracked using a three-dimensional motion capture system. The subjects repeated their walking motion both without a weight and with a tote bag weighing a total of 5% of their body weight in their right hand. The positions of 17 anatomical landmarks during two cycles of a gait trial were generated to form a gait vector. We developed two different linear transformation methods to determine the functional relationship between the normal gait vectors and the tote-bag gait vectors from the collected gait data, one using linear transformations and the other using partial least squares regression. These methods were validated by predicting the tote-bag gait vector given a normal gait vector of a person, accomplished by calculating the Euclidean distance between the predicted vector to the measured tote-bag gait vector of the same person. The mean values of the prediction scores for the two methods were 96.4 and 95.0, respectively. This study demonstrated the potential for identifying a person based on their walking motion, even under different walking conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2018.07.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!