We investigate how susceptible human drivers are to auditory signals in three situations: when stationary, when driving, or when being driven by an autonomous vehicle. Previous research has shown that human susceptibility is reduced when driving compared to when being stationary. However, it is not known how susceptible humans are under autonomous driving conditions. At the same time, good susceptibility is crucial under autonomous driving conditions, as such systems might use auditory signals to communicate a transition of control from the automated vehicle to the human driver. We measured susceptibility using a three-stimulus auditory oddball paradigm while participants experienced three driving conditions: stationary, autonomous, or driving. We studied susceptibility through the frontal P3 (fP3) Electroencephalography Event-Related Potential response (EEG ERP response). Results show that the fP3 component is reduced in autonomous compared to stationary conditions, but not as strongly as when participants drove themselves. In addition, the fP3 component is further reduced when the oddball task does not require a response (i.e., in a passive condition, versus active). The implication is that, even in a relatively simple autonomous driving scenario, people's susceptibility of auditory signals is not as high as would be beneficial for responding to auditory stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089411PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201963PLOS

Publication Analysis

Top Keywords

autonomous driving
20
auditory signals
12
driving conditions
12
driving
8
compared stationary
8
fp3 component
8
component reduced
8
autonomous
7
susceptibility
6
auditory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!