The human chr15q11-q13 imprinted cluster is linked to several disorders, including Prader-Willi (PWS) and Angelman (AS) syndromes. Recently, disease modeling approaches based on induced pluripotent stem cells (iPSCs) have been used to study these syndromes. A concern regarding the use of these cells for imprinted disease modeling is the numerous imprinting defects found in many iPSCs. Here, by reprogramming skin fibroblasts from a control and AS individuals, we generated several iPSC lines and addressed the stability of imprinting status across the PWS/AS domain. We focused on three important regulatory DNA elements which are all differentially methylated regions (DMRs), methylated on the maternal allele: the PWS imprinting center (PWS-IC), which is a germline DMR and the somatic NDN and MKRN3 DMRs, hierarchically controlled by PWS-IC. Normal PWS-IC methylation pattern was maintained in most iPSC lines; however, loss of maternal methylation in one out of five control iPSC lines resulted in a monoallelic to biallelic switch for many imprinted genes in this domain. Surprisingly, MKRN3 DMR was found aberrantly hypermethylated in all control and AS iPSCs, regardless of the methylation status of the PWS-IC master regulator. This suggests a loss of hierarchical control of imprinting at PWS/AS region. We confirmed these results in established iPSC lines derived using different reprogramming procedures. Overall, we show that hierarchy of imprinting control in donor cells might not apply to iPSCs, accounting for their spectrum of imprinting alterations. Such differences in imprinting regulation should be taken into consideration for the use of iPSCs in disease modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240739 | PMC |
http://dx.doi.org/10.1093/hmg/ddy274 | DOI Listing |
PLoS One
January 2025
Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.
The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.
Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.
Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.
Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.
Neuroscience
January 2025
Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia. Electronic address:
Stem Cell Res
December 2024
Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD), a single-gene-inherited kidney disease, is a common cause of end-stage kidney disease (ESKD). The PKD1 gene mutation is the most common cause of ADPKD, accounting for approximately 78% of cases. ADPKD is characterized by the scattered distribution of multiple cysts in the renal parenchyma, ultimately leading to ESKD.
View Article and Find Full Text PDFMamm Genome
December 2024
Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!