Homeodomain transcription factors are involved in many developmental processes across animals and have been linked to body plan evolution. Detailed classifications of these proteins identified 11 distinct classes of homeodomain proteins in animal genomes, each harboring specific sequence composition and protein domains. Although humans contain the full set of classes, Drosophila melanogaster and Caenorhabditis elegans each lack one specific class. Furthermore, representative previous analyses in sponges, ctenophores, and cnidarians could not identify several classes in those nonbilaterian metazoan taxa. Consequently, it is currently unknown when certain homeodomain protein classes first evolved during animal evolution. Here, we investigate representatives of the sister group to all remaining bilaterians, the Xenacoelomorpha. We analyzed three acoel, one nemertodermatid, and one Xenoturbella transcriptomes and identified their expressed homeodomain protein content. We report the identification of representatives of all 11 classes of animal homeodomain transcription factors in Xenacoelomorpha and we describe and classify their homeobox genes relative to the established animal homeodomain protein families. Our findings suggest that the genome of the last common ancestor of bilateria contained the full set of these gene classes, supporting the subsequent diversification of bilaterians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125248 | PMC |
http://dx.doi.org/10.1093/gbe/evy170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!