Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transposable elements (TEs) are mobile genetic elements with very high mutation rates that play important roles in shaping genome architecture and regulating phenotypic variation. However, the extent to which TEs influence the adaptation of organisms in their natural habitats is largely unknown. Here, we scanned 201 representative resequenced genomes from the model plant Arabidopsis thaliana and identified 2,311 polymorphic TEs from noncentromeric regions. We found expansion and contraction of different types of TEs in different A. thaliana populations. More importantly, we identified two TE insertions that are likely candidates to play a role in adaptive evolution. Our results highlight the importance of variations in TEs for the adaptation of plants in general in the context of rapid global climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117151 | PMC |
http://dx.doi.org/10.1093/gbe/evy171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!