We investigated the compound 1T-Cu Ta S with respect to its synthesis, homogeneity range, structure and electronic properties. The average structure of 1T-Cu Ta S resembles that of the high-temperature phase of the layered transition metal dichalcogenide 1T-TaS in which tantalum is partially substituted by copper. 1T-Cu Ta S readily decomposes at elevated temperatures and can only be prepared and stabilized by a sufficiently high amount of sulfur excess. XPS and NEXAFS measurements reveal that copper has the oxidation state  +I in 1T-Cu Ta S, which is supported by quantum chemical calculations. The disorder introduced by copper doping causes an Anderson-type localization of the conduction electrons as manifested by a strong increase of the electrical resistivity and a Curie-type paramagnetism at low temperatures as in other doped systems 1T-M Ta S with higher valent metals. Quantum chemical calculations support this interpretation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aad9c6DOI Listing

Publication Analysis

Top Keywords

structure electronic
8
electronic properties
8
quantum chemical
8
chemical calculations
8
1t-cu
5
forcing substitution
4
substitution tantalum
4
copper
4
tantalum copper
4
copper 1t-tas
4

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Left atrial appendage occlusion (LAAO) has become an important therapeutic target for stroke prevention in patients with nonvalvular atrial fibrillation. Over the past 2 decades, several advancements in LAAO devices (percutaneous and surgical) have been made for stroke prevention and arrhythmia therapy. However, there are several unanswered questions regarding optimal patient selection, the preferred LAAO approach and device, the management of periprocedural and postprocedural complications, including pericardial effusion, device-related thrombus, and device leaks.

View Article and Find Full Text PDF

Data from large-scale, randomized, controlled trials demonstrate that contemporary treatments for heart failure (HF) can substantially improve morbidity and mortality. Despite this, observed outcomes for patients living with HF are poor, and they have not improved over time. The are many potential reasons for this important problem, but inadequate use of optimal medical therapy for patients with HF, an important component of guideline-directed medical therapy, in routine practice is a principal and modifiable contributor.

View Article and Find Full Text PDF

Vernonolide A, a Sesquiterpene Lactone with a Unique Carbon Skeleton from .

Org Lett

January 2025

Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i 96720, United States.

A novel sesquiterpene lactone derivative, vernonolide A (), featuring an unprecedented carbon skeleton, along with its plausible biosynthetic precursor, vercinolide I (), and eight known sesquiterpene lactones (-) were isolated and characterized from the whole plants of (L.). The structures of and were elucidated using nuclear magnetic resonance spectroscopic analysis and calculated and experimental electronic circular dichroism spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!