In the present study, biosorption behavior of a green filamentous alga, spirogyra in its native and modified states was investigated for copper removal from an electroplating industrial effluent. For this, the effluent containing 194 mg·L Cu in sulfate medium was contacted with both forms of spirogyra, under the parametric variations of effluent pH, adsorbent dosage, contact time, and sorption temperature. The study revealed spirogyra as a prominent candidate for removing contaminant metal cation; however, at the same condition, biosorption capacity of modified biomass in gel form was higher than the native spirogyra. At the optimized condition with 6 g sorbent dosage treated to 100 mL effluent for 30 min at pH 6.0 and temperature 20 °C, the maximum 82.8% and 96.4% copper could be adsorbed by the native and modified spirogyra, respectively. The batch sorption data using native biomass followed pseudo-first-order kinetic; exhibiting the multilayer sorption mechanism via surface diffusion could be defined by the Freundlich model. In contrast, the sulfuric acid treated modified spirogyra followed pseudo-second-order kinetics and intra particle diffusion as the rate-limiting step.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2018.226DOI Listing

Publication Analysis

Top Keywords

native modified
12
modified spirogyra
12
electroplating industrial
8
industrial effluent
8
spirogyra
7
effluent
5
native
5
modified
5
removal copper
4
copper electroplating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!